2.2. Systems of Linear Equations

An $m \times n$ system of linear equations in variables x_1, x_2, \ldots, x_n is a list of *m* equations of the form

 $\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$

Any point $(x_1, x_2, ..., x_n)$ which satisfies all the equations in the system is called a *solution* of the system.

2.2. Systems of Linear Equations

We can represent such a system as $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$:

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}}_{\vec{\mathbf{x}}} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{\vec{\mathbf{b}}}$$

Or, more succintly, we can write the *augmented matrix* $(A \mid \vec{\mathbf{b}})$:

a_{11}	a_{12}	•••	a_{1n}	b_1
a_{21}	a_{22}	• • •	a_{2n}	b_2
:		۰.	:	•
a_{m1}	a_{m2}	•••	a_{mn}	b_m

Write the system of linear equations

as an augmented matrix.

2.3. Elementary Row Operations

Let $A \in M_{m,n}(\mathbb{R})$. The following operations are called **elementary** row operations (EROs) on the matrix *A*:

- multiplying a row of *A* by a nonzero scalar. (If the *i*th row of *A* is replaced by α times itself, the notation will be $\alpha R_i \rightarrow R_i$.)
- 2 interchanging two rows of *A*. (If the *i*th and *j*th rows of *A* are interchanged, the notation is $R_i \leftrightarrow R_j$.)
- adding a scalar multiple of one row to another. (If row *i* of A is replaced by itself plus α times row *j* of A, the notation is R_i + αR_j → R_i.)

If $B \in M_{m,n}(\mathbb{R})$ is the result of applying a sequence of EROs to a given matrix $A \in M_{m,n}(\mathbb{R})$, then *B* is said to be **row equivalent** to *A*.

Theorem 2.20: Every ERO can be 'undone' by another ERO. Every sequence of EROs can be 'undone' by a sequence of EROs.

Theorem 2.21: Let $M = (A|\vec{\mathbf{b}})$ be an augmented matrix corresponding to a linear system of equations $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$, and let *e* be an ERO. Then the solution set of the linear system corresponding to the augmented matrix e(M) is identical to the solution set of the linear system corresponding to *M*.

Corollary 2.22: Linear systems that have row equivalent augmented matrices have identical solution spaces.